NDSU



# Viability and Future of Certain Biocomposites

Chad A. Ulven, PhD

**Department of Mechanical Engineering** 

North Dakota State University

Fargo, ND





Chief Technology Officer - c2renew Inc. Fargo, ND

*New Opportunities in Sustainable Materials – September 23<sup>rd</sup> 2020* 



## NDSU What is Possible for Natural Fibers and Biocomposites?

















**YES!!!** 







#### **Biobased Plastics?**







Epoxy or Acrylic type thermoset plastics from epoxidizing vegetable oils?

Cellulose Acetate type thermoplastic by deconstructing cellulose from different sources? Polylactic Acid type thermoplastics by cellulose hydrolysis?







Sustainable?

Ļ Q







### **Breakdown of Bast Straw**

NDSU







## **Natural Fiber Properties**

| Fiber Species*      | Tensile Strength | Stiffness/Young's Modulus | Density              |  |
|---------------------|------------------|---------------------------|----------------------|--|
|                     | (MPa)            | (GPa)                     | (g/cm <sup>3</sup> ) |  |
| Willow bast fiber   | 307.6 ± 130.1    | 16.9 ± 8.4                | $1.19 \pm 0.2$       |  |
| Abaca**             | 400              | 12                        | 1.5                  |  |
| Alfa**              | 131 - 220        | 4 - 6                     | 1.5 - 1.6            |  |
| Bagasse*            | 290              | 17                        | 1.25                 |  |
| Bamboo <sup>*</sup> | 140 - 230        | 1 - 17                    | 0.6 - 1.1            |  |
| Coir**              | 188 - 308        | 18 - 25                   | 1.2                  |  |
| Cotton**            | 287 - 800        | 5.5 - 13                  | 3.7 - 8.4            |  |
| Flax**              | 345 - 1830       | 27 - 80                   | 1.5                  |  |
| Hemp <sup>**</sup>  | 550 - 1110       | 58 - 70                   | 1.5                  |  |
| Jute**              | 393 - 800        | 10 - 55                   | 1.3 - 1.5            |  |
| Kenaf*              | 930              | 53                        | -                    |  |
| Ramie               | 560              | 24.5                      | 1.5                  |  |
| Sisal**             | 507 - 855        | 9.4 - 28                  | 1.3 - 1.5            |  |
| Napier grass***     | 106              | 39 - 47                   | 0.358                |  |
|                     |                  |                           |                      |  |

#### NDSU



## **Constituents of Bast Fibers**

PEER-REVIEWED ARTICLE

#### bioresources.com

Table 8. Characteristics of Long Bast Fibers Produced from Hemp, Jute, Flax, and Kenaf

| Туре  | Fiber chemical content  |                              |             |                |        | Tensile<br>strength<br>(mm) | Moisture<br>content % | Yield<br>(tonne/<br>hectare) | Retting<br>methods | Quality              | references |                                        |
|-------|-------------------------|------------------------------|-------------|----------------|--------|-----------------------------|-----------------------|------------------------------|--------------------|----------------------|------------|----------------------------------------|
|       | Fiber<br>Length<br>(mm) | Fiber<br>diameter<br>microns | Lignin<br>% | Cellulose<br>% | pectin | Hemi<br>cellu-<br>lose %    | _ ()                  |                              |                    |                      |            |                                        |
| Hemp  | 15-55                   | 17-22.8                      | 5-3         | 70-92          | 0.9    | 18-22                       | 310-750               | <15                          | 8-18               | Chemical<br>retting  | Fair       | 5,7,10,14,1<br>5,16,17,18,<br>19,20,21 |
| Jute  | 2-5                     | 15.9-20.7                    | 5-13        | 51-84          | 0.2    | 12-20                       | 200-450               | 23                           | 2-4                | Dew retting          | Good       | 5,7,8,9                                |
| Flax  | 9-70                    | 5-38                         | 14-19       | 60-81          | 0.9    | 2.3                         | 345-1100              | 10-12                        | 1.4-2.5            | Enzymatic<br>retting | Fair       | 2,5,7,9,10,<br>11,12,13                |
| Kenaf | 2.6-4                   | 17-21.9                      | 15-19       | 44-57          | 2      | 21                          | 295-1191              | 10-20                        | 2-4                | Water<br>retting     | Good       | 1,2,3,4,5,6                            |

Source: <sup>1</sup> Misra (1987), <sup>2</sup> Mohanty et al. (2001), <sup>3</sup> Rowell and Han (2000), <sup>4</sup> Anon. (2001), <sup>5</sup> Perry (1975), <sup>6</sup> Carr et al. (2005), <sup>7</sup> Skorski (1963), <sup>8</sup> Gassan and Bleddzki (2001), <sup>9</sup> Rowell and Stout (1998), <sup>10</sup> Harders and Steinhauser (1974), <sup>11</sup> Alann André. (200)6, <sup>12</sup> Rowell and Han (2000), <sup>13</sup> Biogiotti and Kenny (2004), <sup>14</sup> Kozlowski (2000), <sup>15</sup> Joseph (2002), <sup>16</sup> Meier and Mediavilla (1998), <sup>17</sup> Mwaikambo and Ansell (2006), <sub>18</sub> Peston (1963), <sup>19</sup> Hughes (2000, 1997), <sup>20</sup> Ronalli (1999), and <sup>21</sup> Mwaikambo (2002)



## NDSU Understanding Natural Fiber Stress-Strain Behavior



#### NDSU Statistical Modeling Approaches



-c2ren



## **Fatigue Testing and Modeling**

NDSU



#### NDSU Vibration Damping Characteristics



Time (seconds)

-c2ren



# NDSU Biocomposite & Supply Chain Challenges

- Lack of standards for natural fibers and their biocomposites
- Lack of defining and understanding compostable vs. biodegradable
- Lack in understanding types of decortication technology to use and where
- Lack in understanding where to locate decortication facilities
- Lack in understanding quality, procurement, and transportation of straw











## **Biocomposite Opportunities**

- Continued fiber hybridization for structural applications
- Foams and foam composites (non-isocyanate based)
- Long fiber thermoplastics (extrusion/compression molding)
- Additive manufacturing (pellet fed large/big area)







NDSU



#### **Thank You!**

