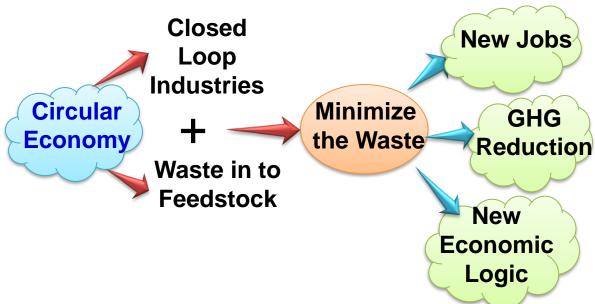


Circular Economy: A Path Towards Innovating Plastics & Biobased Materials – Need for Disruptive R&D!

Amar Mohanty

CHANGING LIVES
IMPROVING LIFE


Key points: What I will be presenting?

- Circular Economy? "Waste-free" World Linear model vs. Closed-loop System
- Research & Innovation to supplement "Circular Economy" – Focus on Bioproducts
 - (I) Compostable Packaging
 - (II Durable Auto-parts
 - (III) Consumer Products
- Innovation? Taking Discovery Research for real world uses
- International move? Where we stand?
- Concluding thoughts

The Circular Economy? – "A New Relationship with our goods and materials"

Key principles of a 'waste-free' world: reuse, repair, remanufacture and upgrading.

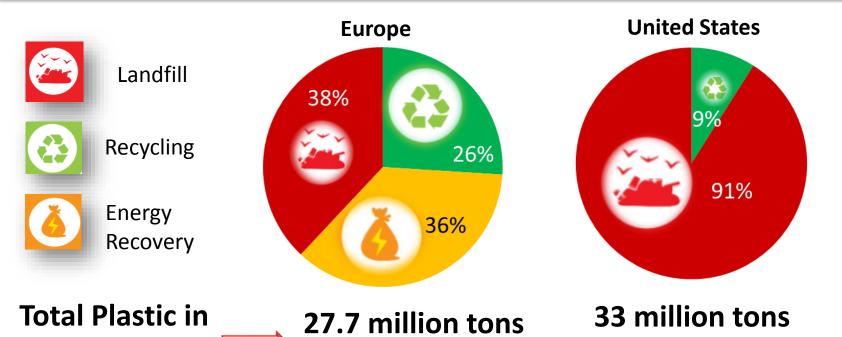
Walter R. Stahel, Nature **531**, 443–446 (24 March 2016)

The Circular Economy vs. Linear Economy

- > Flow of Linear vs. Circular economy
- ➤ Linear model- "produce-use-and dispose": not profitable, harmful to environment & unsustainable
- > "Close loop system" money return back: innovation driven
- Collides Solo structures of Industries, Academics & Govt.
- Knowledge Dispersion: Big Industry & SMEs

A shift to a circular economy – A low carbon Economy

Results J Each Nation's


- ❖ GHG emission reduction: By up to 70%
- ❖ Workforce growth: ~4%

(Study of Seven European Nations)

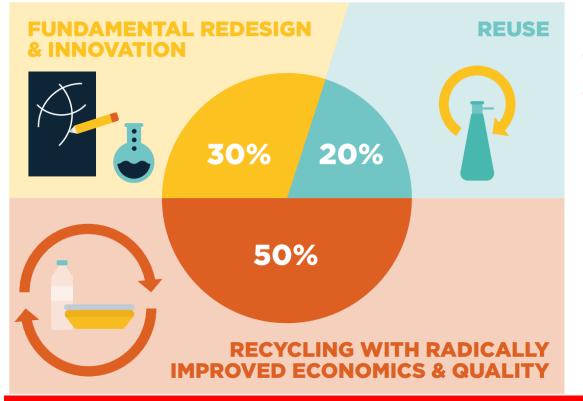
go.nature.com/biecsc & Walter R. Stahel, Nature 531, 443-446 (24 March 2016)

Specific Waste Treatment – Current Scenario

Global Plastics Production in 2014: 311 million metric tons

(2012 Stats)

In 2013, US disposed more than 35 million tons of FOOD WASTE in LANDFILL Once in landfills, food breaks down to produce methane, a potent GHG contributing to climate change


(2013 stats)

- 1. http://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/
- $2. \quad http://www.plasticseurope.org/documents/document/20150227150049-final_plastics_the_facts_2014_2015_260215.pdf$
- 3. http://www3.epa.gov/epawaste/wastes_archive/plastics.htm
- 4. http://www.epa.gov/recycle/reducing-wasted-food-home

Waste Stream

New Plastic Economy: Innovation through Circular Economy Principles: Focus on Packaging

- □ Packaging sector we lose/year: \$80-120 billion to economy
- ☐ By 2050: Oceans would have *more plastic than fish* (by weight)
- ☐ Since > 40 years 1st Recycling Symbol in market place
- □ Now: ~14% packaging plastics: Collected for recycling

<u>A three-step</u> fundamental approach:

- ❖ Redesign & Innovation
- Reuse
- Recycling: Improved Economics & Quality

Ref.: World Economic Forum and Ellen MacArthur Foundation, *The New Plastics Economy – Catalysing action* (2017, http://www.ellenmacarthurfoundation.org/publications).

Bioproducts Discovery & Development Centre, University of Guelph, Canada

Plastic Packaging- Needs major R&D – Fundamental Redesign & Innovation

EXAMPLES

SHARE OF PLASTIC PACKAGING MARKET % BY WEIGHT

PRIORITY SOLUTIONS

SMALL-FORMAT

Lids, tear-offs, caps, sachets and generally all items smaller than 40 - 70mm

~10%

REDESIGN

packaging formats and/or delivery models (and after-use systems)

MULTI-MATERIAL

Packaging with inseparable layers of different materials

~13%

INNOVATE

in materials and reprocessing technologies

UNCOMMON MATERIALS

Uncommon plastic packaging materials like PVC, EPS, PS

~10%

Actively explore to

REPLACE

as a priority PVC, EPS, PS by known alternatives

NUTRIENT-CONTAMINATED

Coffee capsules, organic waste bags, takeaway food packaging

NOT QUANTIFIED

SCALE UP

compostable plastics for targeted applications to help recover nutrients of packaging contents

FUNDAMENTAL REDESIGN AND INNOVATION is needed for >50% of plastic packaging (by no. of items), or >30% of plastic packaging (by weight)*

With-out which: Will never be recycled nor reused

Leakage to eco-system: negative externalities, GHG emissions etc. – loss of ~\$40 billion (Ref. UNEP)

□ Scale-up: Compostable packaging & associated infrastructure: Nutrient

■ Multimaterial: O₂ & H₂O

Economically / Even

Technically: Non-

alternative!

Barrier: Many of such-

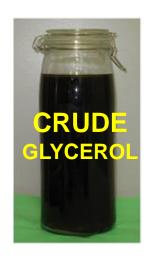
recyclable: Compostable

contaminated uses

~330 billion single-use plastic carrier bags/year – In each second; over 10,000 bags – Mostly leaks into the eco-system

Ref.: World Economic Forum and Ellen MacArthur Foundation, *The New Plastics Economy – Catalysing action* (2017, http://www.ellenmacarthurfoundation.org/publications).

Undervalued Co-products To Value-addition


Cellulosic Ethanol Industries

Pulp and Paper Industries

Corn Ethanol Industries

Biodiesel Industries

Coffee Industries

Tomato Sauce Industries

Wineries

Pyrolysis Industries

Circular Bioeconomy - Closing the Loop

➤ Single-serve coffee : Continues to Grow! \$5 billion US & Canada - 2014 sales

COLLABORATION

BDDC, U of G; Club Coffee LP; CGTech; Fourmark Manufacturing

Value-added uses: food and food production wastes: In new compostable Products

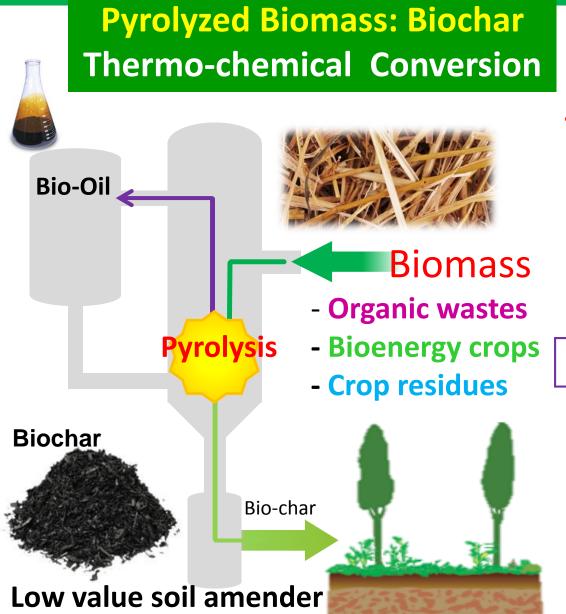
Spent coffee grounds

Waste tomato skin

Heinz Company alone: 2 million tons tomato yr.: 200,000 ton

pomace = 200 million kilogram

Spent tea powder



Post-Industrial PLA cloth

Bioproducts Discovery & Development Centre, University of Guelph, Canada

Biochar? "A solid material obtained from thermochemical conversion of biomass in an oxygen-limited environment" [IBI]

Bio-char Price: ~ 30 ¢/lb.

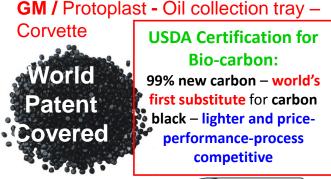
Bio-char Yield		
	Slow	Fast
Bio- char	35%	12%
Bio-oil	30%	75%

Bio-energy in the black, Johannes Lehmann

http://www.biobasedeconomy.nl/wp-content/uploads/2012/07/Bio-Based-Industries-PPP-Vision-doc.pdf http://www.clariant.com http://www.dynamotive.com/fuels/

Application Areas: Biocarbon (also from food wastes): Products in the Marketplace or Under development

Automotive interior parts, Compostable Mulch Films, Consumer products


Compostable Mulch Film

Console box

Spare tire cover

Air duct controller

Coca Cola bottle packaging tray

Fender cover

Diverting "Tire waste" in Ontario = More Products = More Research & Innovation

Playgrounds Mulch for gardens

Sidewalks

Running paths

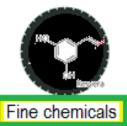
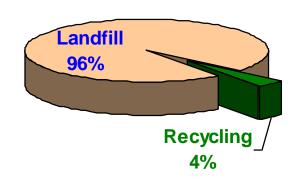


Photo Courtesy: http://rethinktires.ca/wp-content/uploads/Collector-Poster-Colour.pdf

Ontario needs
Research & InnovationNew Value-added
Materials for Industrial Uses

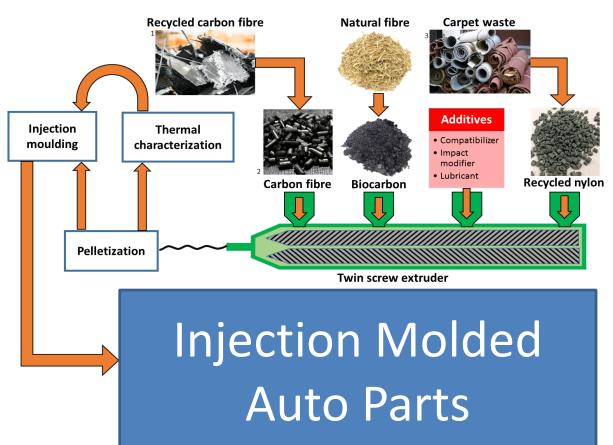

Ontario: 12 million of tires sold each year
Ontario: 10 mil. scrap tyres each year. - "waste"

Source: http://www.catraonline.ca/national-data

Carpet Wastes are Huge: Ontario Needs Research & Innovation

- Carpet wastes-6.5 billion lbs. in landfills: North America
- > 230 to 260 million kg carpet wastes: landfills in Canada
- Canada: Govt. needs strategies in diverting "Waste Carpet" from landfills
- Ontario Needs: Research & Innovation Using this valuable resource New Materials

http://www.asperarecycling.com/


http://rcbc.bc.ca/files/u7/con2012_JosephHall.pdf

Carpet Image: CCRE (Canadian Carpet Recovery Effort)

Circular Economy: New Materials from Wastes

Value-added Uses of "Waste Carpet": Engineering Plastics Source: Auto-parts Uses

On going Project – U of G/OMAFRA – Bioeconomy for Industrial Uses

COLLABORATION

Ford Motor Company Viking Recycling CGTech, ON Ontario Inc.

Impact on Climate Change (Preliminary Study)*:

- Sustainable fillers + Engineering plastic based biocomposites to replace synthetic glass fiberreinforced composites
- significantly lighter (~15%):
 GHG reduction emissions
- The reduction of GHG emission is estimated at ~3.952 kg of CO2 per kg of virgin material counterpart.

Bioproducts Discovery & Development Centre, University of Guelph, Canada

"Circular Economy" – International Scenario

- ➤ China, South Korea, USA Research Programmes: Boost of Reuse & Remanufacturing
- ➤ Swedish Foundation for Strategic Environmental Research & EU Horizon 2020 Programme: 1st Call on "Circular Economy" proposal in 2014
- **➤ 2015 December: "Circular Economy" package** submission by European Commission to the Parliament
- ➤ Ellen MacArthur Foundation (Founded by : Roundthe world Yachtswoman) Boosting Awareness

Walter R. Stahel, Nature **531**, 443–446 (24 March 2016)

Few Key Messages: Concluding Thoughts

- Nothing is called "waste"
- "Circular Economy": Trillion dollar opportunities
- Need: Resource productivity: Factor of five
- Govt. Call for Projects Focus: "Circular Economy"
- Collaboration: Academia, Industries & Govt. Disruptive technology & business models
- Regional "Circular Economy" Translate to Global
- SMEs would play vital role in "Circular Economy"
- Circular Economy: GHG emission reduction Inevitable, achievable & profitable

